Размер шрифта: A A A Изображения Выключить Включить Цвет сайта Ц Ц Ц

Геометрический и физический смысл производной при решении прикладных задач

Акимова Елена Ибраимовна 31 мая 2017 г.

Построим произвольный график некой функции y = f (x) на координатной плоскости, построим касательную в точке xо, обозначим угол между прямой о осью ox как α (альфа)

Из курса алгебры известно, что уравнение прямой имеет вид:

То есть производная функции = f(x) в точке x0 равна угловому коэффициенту касательной:

А угловой коэффициент в свою очередь равен тангенсу угла α (альфа), то есть:

Угол α (альфа) может быть меньше, больше 90 градусов или равен нулю.

Проиллюстрируем, два случая:

1. Угол наклона касательной больше 90 градусов (тупой угол).

2. Угол наклона касательной равен нулю градусов (касательная параллельна оси ох).

То есть задачи, в которых дан график функции, касательная к этому графику в определённой точке, и требуется найти производную в точке касания, сводятся к нахождению углового коэффициента касательной (либо тангенса угла наклона касательной, что одно и тоже).

Ниже рассмотрим решение таких задач через нахождение тангенса угла между касательной и осью абсцисс (осью

Обратите внимание, что на координатной плоскости обозначены две точки через которые проходит касательная – это очень важный момент (можно сказать ключевой в этих задачах). Что ещё потребуется — это знание формулы приведения для тангенса тупого угла.

.

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции y = f(x) в точке x0.

Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс. Для того, чтобы найти тангенс этого угла, построим прямоугольный треугольник, где отрезок ограниченный двумя точками на графике, будет являться гипотенузой, а катеты параллельны осям. В данной задаче это точки (–5; –4), (1; 5).

Напомню: тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему.

Катеты определяем по числу клеток.

Угол наклона касательной к оси абсцисс равен углу BAC, так как катет АС параллелен оси ох. Значит

Ответ: 1,5

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции y = f(x) в точке x0.

Задача аналогична предыдущей. Так же строим прямоугольный треугольник, где отрезок ограниченный двумя точками на графике, будет являться гипотенузой. В данной задаче это точки (–5; –7), (3; 3).

Катеты также определяем по числу клеток.

Угол наклона касательной к оси абсцисс равен углу ВАС, так как катет АС параллелен оси ох. Значит

Ответ: 1,25

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции y = f(x) в точке x0.

Строим прямоугольный треугольник, где отрезок ограниченный двумя точками на графике, будет являться гипотенузой. В данной задаче это точки (–3; 3) и (5; 11). Из точки (5;11) построим продолжение катета так, чтобы получился внешний угол.

Так как CD параллельна оси ох, то угол ABD равен углу наклона касательной к оси ох. Таким образом, мы будем вычислять тангенс угла ABD. Отметим, что он больше 90 градусов, поэтому здесь необходимо воспользоваться формулой приведения для тангенса:

Значит

*Длины катетов считаем по количеству клеток.

Ответ: -1,75

.

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции y = f(x) в точке x0.

Решите задачу самостоятельно.

Ответ: -1,75

.

На рисунке изображен график функции y = f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 10. Найдите значение производной функции в точке х0 = 10.

Построим касательную, проходящую через начало координат и точку графика с абсциссой равной 10. Обозначим угол наклона касательной как альфа, а смежный с ним угол как бета.

Значение производной в точке х0 = 10 равно тангенсу угла наклона касательной к оси абсцисс. То есть, для нахождения производной достаточно вычислить тангенс угла альфа. Воспользуемся формулой приведения:

Тангенс угла бета можем найти из прямоугольного треугольника, катеты которого равны 6 и 10:

Ответ: — 0,6


На первый взгляд задачи, связанные с использованием производной входящие в ЕГЭ по математике, довольно разнообразны. Но на самом деле для их решения нужно изучить совсем небольшой «кусочек» теории.


Задача.

Материальная точка движется прямолинейно по закону

x (t) = (1/6) t2 + 5t + 28

где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 6 м/с?

Найдем закон изменения скорости:

Для того, чтобы найти, в какой момент времени

Ответ: 3

Материальная точка движется прямолинейно по закону x (t) = t2 – 7t – 20

где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 5 c.

Физический смысл производной это скорость (скорость движения, скорость изменения процесса, скорость работы и т.д.)

Найдем закон изменения скорости: v (t) = x′(t) = 2t – 7 м/с.

При t = 5 имеем:

Ответ: 3

Задача.

Материальная точка движется по закону:

x(t)=−15t5+t4−t3+5tx(t)=−15t5+t4−t3+5t

где xx — расстояние от точки отсчета в метрах, tt — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени t=2ct=2c.

Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени t=2ct=2c. Другими словами, нам нужно найти vv, т.е.

v=S′=x′(2)v=S′=x′(2)

Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.

Давайте решать. В первую очередь, посчитаем производную:

x′(t)=−15⋅5t4+4t3−3t2+5x′(t)=−15⋅5t4+4t3−3t2+5

x′(t)=−t4+4t3−3t2+5x′(t)=−t4+4t3−3t2+5

Нам требуется найти производную в точке 2. Давайте подставим:

x′(2)=−24+4⋅23−3⋅22+5=x′(2)=−24+4⋅23−3⋅22+5=

=−16+32−12+5=9=−16+32−12+5=9

Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени t=2ct=2c составит 9 м/с.

Задача.

Материальная точка движется по закону:

x(t)=13t3−4t2+19t−11x(t)=13t3−4t2+19t−11

где xx — расстояние от точки отсчета в метрах, tt — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?

Взгляните, в прошлый раз от нас требовалось найти vv в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.

В первую очередь, вновь ищем производную:

x′(t)=13⋅3t2−4⋅2t+19x′(t)=13⋅3t2−4⋅2t+19

x′(t)=t2−8t+19x′(t)=t2−8t+19

От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:

t2−8t+19=3t2−8t+19=3

t2−8t+16=0t2−8t+16=0

(t−4)2=0(t−4)2=0

t−4=0t−4=0

t=4t=4

Полученное число означает, что в момент времени 4 с vv материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.


Ключевые моменты

В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.


Яндекс.Метрика